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1. OVERVIEW 
 
Project goals were to improve the basic neuroscientific understanding of imagined speech and 
intended direction and to develop signal-processing methods relevant to their decoding from 
brain imaging data.  We used non-invasive brain-imaging methods:  electroencephalography 
(EEG), magnetic resonance imaging (MRI), and magneto-encephalography (MEG).  Project 
research was conducted by faculty, post-docs, graduate students, and undergraduate students at 
three academic institutions:  the University of California, Irvine (UCI), Carnegie Mellon 
University (CMU), and New York University (NYU).  Work at UCI focused on EEG studies of 
imagined speech and of intended direction.  Work at CMU focused on analysis of EEG data 
collected at UCI.  Work at NYU focused on MEG and fMRI studies.  This report presents 
scientific results in Section 2, auxiliary information in Section 3, and bibliographic references in 
Section 4. 
 
2.  SCIENTIFIC RESULTS 
 
The first section presents results for imagined speech (Section 2A).  It covers work at NYU on an 
efference copy model for speech production, which provides for the generation of articulatory 
and auditory imagery during imagined speech, and experimental evidence in its favor.  It then 
turns to work with EEG at UCI and CMU.  This work focuses primarily on the use of machine 
learning methods to determine circumstances under which EEG provides information about 
imagined speech. 
 
The second section presents results for intended direction (Section 2B).  Experimental work at 
UCI shows that the direction of attention to auditory stimuli stimulates brain networks similar to 
those found when directing attention to visual stimuli.  It shows also that the bottom-up direction 
of attention to a visual target generates signals in EEG which may be used to infer where the 
target is located in the visual field.  Finally, work with BCIs has led to successful demonstrations 
of navigation in virtual environments and of robot remote control using brain waves. 
 
2A.  IMAGINED SPEECH 
 
Project results for imagined speech include the development of an efference copy model of 
speech production (Tian & Poeppel, 2010, 2012).  The model describes the brain's generation of 
the auditory and motor imagery that one experiences while imagining speech.  Efference copy 
models feed voluntary motor commands back to various brain centers so that the predicted 
effects of these voluntary actions on the organism, including changes in what is sensed, can 
better be taken into account.  This kind of model dates back to Von Helmholtz and was put on a 
firm footing by the work of Von Holst and Mittelstaedt (1950) and Sperry (1950) on motor 
control and visuomotor coordination.   
 
Efference copy model.  The Tian & Poeppel (2010, 2012) model is shown in Figure 1.  Motor 
commands concerning speech production are copied and sent to a module that helps to predict 
the resulting motor state.  If there is a significant difference between sensed and predicted motor 
states (e.g., a situation encountered when one is talking with one's mouth full), then motor 
planning can be changed appropriately.  The motor efference copy also allows for prediction of 
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the sensory effects of speech production.  A perceptual efference copy is used to predict what 
will be heard when speech motor actions are carried out.  The motor state estimation and sensory 
prediction processes are thought to be associated with motor imagery and auditory perceptual 
imagery, respectively, during imagined speech production.  This assumption lets the efference 
copy model link speech production and imagined speech production. 
 

 
Figure 1.  Results of MEG studies by Tian & Poeppel on imagined movement and imagined speech suggest that an 
internal forward model underlies mental imagery of speech.  The motor systems that mediate action preparation 
carry out the same functions in the mental imagery of speech, but only perform motor simulation, in the sense that 
the planned motor commands are truncated along the path to primary motor cortex and are not executed (the red 
cross over external outputs).  A copy of such planned motor commands is processed internally and is used to 
estimate the associated somatosensory consequences.  A copy of the somatosensory estimate is sent on to 
modality-specific areas, and the perceptual consequences that would be produced by the overt action are estimated.  
Imagery associated with articulator movement and auditory perception during imagined speech is held by the 
model to be the result of residual activity from these internal estimation processes and is linked to the absence of 
cancellation from external feedback (marked by the red Xs over somatosensory and sensory feedback pathways).  
After Tian & Poeppel (2012). 

 
MEG topographies found while imagining speech.  The model is supported by a variety of 
experimental results on speech using MEG (Tian & Poeppel, 2010, 2012, 2013, 2015).  One such 
result (Tian & Poeppel, 2010) is shown in Figure 2.  MEG topographies found when imagining 
speech articulation or when imagining speech auditory perception resemble those found when 
actually hearing speech.  This provides nice evidence in favor of the model shown in Figure 1.  
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Figure 2.  Producing articulation imagery (top left) generates in MEG a topography (scalp response pattern) that 
differs from that associated with overt articulation (bottom topography).  Yet producing articulation imagery by 
imagining speaking leads shortly thereafter (170 msec) to a response topography (top right) that resembles strongly 
that associated with hearing speech (middle right).  Likewise, when one produces hearing imagery by imagining 
hearing speech, the resulting topography (middle left) resembles that found when hearing actual speech (middle 
right).  

 
Time-frequency window for use of speech production predictions.  An MEG study by Tian and 
Poeppel (2015) introduces further evidence in favor of the model.  Tian and Poeppel argue that a 
critical subroutine of self-monitoring during speech production is to detect any deviation 
between expected and actual auditory feedback.  They investigated the associated neural 
dynamics using MEG recording in mental-imagery-of-speech paradigms. Participants covertly 
articulated the vowel /a/; their own (individually recorded) speech was played back, with 
parametric manipulation using four levels of pitch shift, crossed with four levels of onset delay.  
A non-monotonic function was observed in early auditory responses when the onset delay was 
shorter than 100 msec.  Suppression was observed for normal playback, but enhancement for 
pitch-shifted playback.  However, the magnitude of enhancement decreased at the largest level of 
pitch shift that was out of pitch range for normal conversion, as suggested in two behavioral 
experiments.  No difference was observed among different types of playback when the onset 
delay was longer than 100 msec.   
 
These results suggest that the prediction suppresses the response to normal feedback, which 
mediates source monitoring (see Figure 3).  When auditory feedback does not match the 
prediction, an “error term” is generated, which underlies deviance detection.  Tian & Poeppel 
(2015) suggest that a frequency window (addressing spectral differences) and a time window 
(constraining temporal differences) jointly regulate the comparison between prediction and 
feedback in speech. 
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Figure 3.  Efference copies generated during speech production generate internal predictions which may be 
compared to auditory feedback to determine whether there are errors in speech production that need to be 
addressed.  Results of an MEG experiment suggest that the error term is evaluated within a time/frequency window 
(Tian & Poeppel, 2015). 

 
Dual-stream model of speech production prediction.  In work as yet unpublished, team 
members at NYU performed an fMRI experiment in which they establish that two processing 
streams are likely to underlie perceptual prediction in imagined speech production. 
 
Subjects performed two speech imagery tasks -- articulation imagery (AI) and hearing imagery 
(HI) -- designed to differentially recruit the two streams.  As shown in Figure 4, AI induced 
greater activity in the simulation-estimation stream, including sensorimotor cortex, subcentral 
(BA 43), middle frontal cortex (BA 46) and supramarginal gyrus (SMG), suggesting more 
recruitment of simulation and estimation functions.  Moreover, AI showed more activation in 
posterior superior temporal sulcus compared with HI, suggesting that precise auditory 
representation can be obtained via simulation-estimation mechanisms.  On the other hand, 
distributed memory networks, including middle frontal (BA 8), inferior parietal cortex and 
intraparietal sulcus, were more activated during HI compared to AI, suggesting a role for the 
memory-retrieval prediction pathway in the HI task.  
 
These results demonstrate that neural systems implement motor simulation-estimation and 
memory retrieval as two distinct mechanisms to internally construct corresponding perceptual 
outcomes. These two mechanisms serve as a foundation for predicting perceptual changes, either 
via an established causal relationship between actions and their perceptual consequences or via 
stored perceptual experiences of environmental regularity.  
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Figure 4.  Dual stream prediction model (DSPM). Top: approximate cortical regions in the hypothesized dual 
streams. Bottom: schematic diagram of the DSPM (color scheme corresponds to the anatomical locations above). 
The abstract auditory representations (orange) can be induced from both bottom-up and top-down processes and 
are formed around regions of STG and STS.  The top-down induction process can be carried out in either the 
memory-retrieval or simulation estimation prediction pathway. The memory-retrieval stream (blue) includes 
pMTG, MTL and distributed frontal-parietal networks, for retrieval from long-term lexical items, episodic and 
semantic memory, respectively. The simulation-estimation stream (red) includes the frontal motor system and 
parietal somatosensory system. The articulatory trajectory is planned in frontal motor regions, including IFG, 
PMC, INS and SMA. If covert production is the goal, the planned articulation signal bypasses M1 and is 
simulated internally. The somatosensory consequence of the simulated articulation is estimated over parietal 
somatosensory regions, including SI, SII and SMG. The auditory consequences -- in the form of an abstract 
auditory representation – is derived from the subsequent estimation. A highly specified auditory representation 
(thick arrow) is obtained in the bottom-up perceptual process that goes through spectrotemporal analysis of 
external stimuli in STG (brown).  The stream that the motor simulation and perceptual estimation processes are 
available can enrich the specificity of predicted auditory representations (solid arrows), compared to enrichment 
from memory retrieval stream (dotted arrows). Abbreviations: STG, superior temporal gyrus; STS, superior 
temporal sulcus; pMTG, posterior middle temporal gyrus; MTL, middle temporal lobe; IFG, inferior frontal 
gyrus; PMC, premotor cortex; INS, insula; SMA, supplementary motor area; M1, primary motor cortex; SI, 
primary somatosensory cortex; SII, secondary somatosensory cortex; and SMG, supramarginal gyrus.  After Tian, 
Zarate, & Poeppel (submitted). 
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Imagined speech identification.  EEG experiments on speech production show that one can use 
EEG traces of the heard or the imagined speech loudness envelope to determine which speech 
stream one is listening to or imagining, respectively (Deng et al., 2010). There are also positive 
results for distinguishing imagined words and sentences (Lappas, 2011) and imagined phonemes 
(Brigham & Vijaya Kumar, 2010) on the basis of information other than loudness envelope.  
Furthermore, experimental results show also that one can use EEG traces of speech loudness 
envelopes to determine the speech stream to which one is paying attention (Horton et al., 2011, 
2013, 2014).   
 
Loudness envelope information in EEG.  An early EEG experiment on imagined speech at UCI 
involved imagined sentences drawn from the TIMIT(sx) database.  A pilot set of EEG data 
collected in early fall 2008 was analyzed to determine whether any electrode waveforms bore 
traces of the temporal envelope of the acoustic speech waveform heard during the cue period of 
the trial.  Such an envelope is illustrated in Figure 5.  Six sentences drawn from the timit(sx) 
database were used.  Signal processing methods involving the Hilbert-Huang transform let one 
detect the envelope in EEG signals when a subject is listening to speech.  This analysis was 
applied to an existing, full dataset in a study of steady-state auditory evoked potentials (SSAEP).  
When listening to speech in this SSAEP experiment, instantaneous frequencies extracted by a 
Hilbert-Huang transform are correlated with the envelope of the speech signal (Deng & 
Srinivasan, 2010).  The same methods were used to determine whether there were any electrodes 
with waveforms correlated to the envelope of the acoustic speech waveform during the imagined 
speech period of the trial in the pilot dataset:  yes.  What this means intuitively is that the varying 
loudness of a sentence (pattern of stress) is echoed in EEG both when one listens to that sentence 
and when one imagines the sentence. 
 

 
  
                 CRITICAL EQUIPMENT NEEDS PROPER MAINTENANCE 
 
Figure 5.  The envelope of the TIMIT(sx) sentence number 37, "critical equipment needs proper maintenance", 
shows how loudness varies as a function of time for this particular speaker.   

 
Imagined speech rhythm identification using EEG.  Analysis of data from the "BaKu" 
experiment shows that one can use EEG to determine the rhythm with which syllables are 
produced in imagination (Deng et al., 2010).  An initial analysis of high-density EEG data from 
the BaKu experiment, in which two syllables (/ba/ and /ku/) were spoken in imagination in one 
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of three rhythms, showed that information concerning imagined speech is present in EEG alpha 
(9-12Hz), beta (13-18Hz) and theta (3-8Hz) bands.  Discovering in the BaKu data informative 
spectral features within bands led to follow-on work with the Hilbert-Huang transform (Huang et 
al., 1998), spearheaded by former UCI grad student Siyi Deng. This analysis focused on using 
predictive classification of envelopes to decode the rhythm with which imagined syllables are 
produced.  A modified Second Order Blind Identification (SOBI) algorithm was used to help 
enhance the signals and reduce dimensionality (Cardoso, 1998; Tang et al., 2005).  The SOBI 
algorithm uses the consistent temporal structure along multi-trial EEG data to blindly decompose 
the original recordings into a set of neuroanatomically-grounded components.  These SOBI 
components possess broad spatial distributions across the scalp that distinguish left/right, 
front/back, etc.  In Deng's work, joint temporal and spectral features were extracted from the 
Hilbert spectra of selected SOBI components, after performing a Hilbert-Huang transform.  
 
Hilbert spectra of empirical mode components provide accurate time-spectral representations of 
non-stationary data that are sparser than representations provided by conventional techniques 
like short-time Fourier spectrograms and wavelet scalograms (see Figure 6).  Predictive 
classification of the three rhythms yields good results for inter-trial transfer, with performance 
for all seven subjects lying at a significantly greater than chance level.   
 

 
Figure 6.  Comparison of the spectrogram, wavelet scalogram and Hilbert spectrum of the same time series.  Top 
plot:  Original time-varying EEG signal from SOBI output.  Second plot:  Short-time Fourier transform 
spectrogram.  Third plot:  Morlet wavelet spectrogram.  Bottom plot:  Hilbert spectrum, projected onto an 18Hz by 
384 time-point grid.  Note that the Hilbert spectrum representation is considerably sparser than that of the STFT 
and wavelet spectrograms. 

 
The paper that describes the application of the empirical mode decomposition to the 
identification of BaKu trial rhythm (Deng et al., 2010) refers also to the successful use of class-
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averaged spectrograms.  An advantage of this latter method is that it can be implemented as a 
real-time classification procedure for a brain-computer interface.  The method finds the average 
spectrogram generated in trials of various classes and orthogonalizes these spectrograms to 
produce spectrogram matched filters.  Matched filter outputs on a particular trial, found by 
computing a scalar product of the matched filter spectrogram and the trial spectrogram, are used 
to classify the trial:  the matched filter producing the largest scalar product output identifies the 
trial class.  While the classification performance for BAKU rhythm found using class-averaged 
spectrograms is poorer than that found using the SOBI/HHT methods, the margin is not wide.  
Furthermore, its electrode-by-electrode analysis lets one identify informative electrodes for 
particular subjects.  The identification provides no evidence for a single set of informative scalp 
locations common to all subjects. 
 
The results suggest that the rhythmic structure of imagined syllable production can be detected in 
non-invasive brain recordings, and provide a step toward the development of an EEG-based 
system for communicating imagined speech.   
 
Deng and colleagues (2010) reported negative results for determining which of two syllables was 
imagined in the BaKu experiment using empirical mode decomposition or matched filter 
methods.  However, CMU graduate student Kathy Brigham and Kumar Bhagavatula succeeded 
in classifying /ba/ and /ku/ trials (Brigham & Vijaya Kumar, 2010).  They were able to classify 
imagined syllables using data preprocessing methods which relied on Hurst exponents to remove 
trials and electrodes deemed to contain artifacts (e.g., electromyographic).  A large number of 
trials and electrodes were removed.  The remaining trials were used to determine whether /ba/ 
and /ku/ may be discriminated from one another using EEG.  Results varied from "not at all" to a 
high of 88% classification success (vs. 50% guessing rate), depending on subject. 
 
Heard and imagined sentence identification using EEG.  Having obtained his doctoral degree, 
UC Irvine Associate Specialist Dr. Siyi Deng completed a further, as yet unpublished, study on 
whether EEG can be used to determine which sentence someone listens to or produces in 
imagination (Deng et al., submitted).  The study focused on the loudness envelope of speech (its 
loudness as a function of time) and its representation in EEG signals to determine whether 
sentences can be discriminated on the basis of the EEG representation of their loudness 
envelopes. 
 
The experiment used both heard and imagined speech to determine whether cortical signatures of 
heard speech can be used to identify imagined speech.  Each trial in the experiment presented 
one of six possible spoken sentences; it was both heard and, immediately afterwards, produced in 
imagination.  The analysis focused on the use of envelope following responses (EFRs) to identify 
heard sentences and to identify imagined sentences.  Common to both analyses was the 
employment of source imaging methods to find the cortical origins of EFRs to heard speech.  
Reconstructing the EEG from the strongest sources of the EFRs in parietal and temporal cortex, 
shown in Figure 7, improved the correlation between EEG and the amplitude envelope of the 
heard speech.   
 



	
   12 

 

	
    

 

Figure 7.  Source localization results for one of the subjects show the cortical distributions of the two strongest 
EEG components in which are found envelope following responses (EFRs).  These sources are illustrated using a 
color scale in which red indicates the greatest strength.  The strongest sources, found in parietal and temporal 
cortex, are used to find the cortical origins of EFRs to heard speech and to estimate the EEG generated by these 
sources. 

 
Single-trial classification performance with the heard sentences was found to be statistically 
significant for two of eight subjects.  Significant classification performance was found for all 
subjects when one used EEG data from multiple trials of the same sentence, concatenated to 
produce data of greater duration.  The improvement in classification with heard speech duration 
is shown in the left panel of Figure 8.  In order to classify EEG recordings of imagined speech, 
activities at the cortical sources determined for heard speech were estimated from EEG data 
recorded while speech was imagined.  Referring to the right panel of Figure 8, one sees that 
classification performance with imagined sentences improves as the duration of EEG data 
increases.  About seven trials of the same sentence are required for classification of the imagined 
sentence to reach statistical significance.  These results suggest imagining speech engages some 
of the cortical populations involved in perceiving speech, as suggested by models of speech 
perception and production. 
 
 

  
Figure 8.  Classification performance as a function of (left plot) heard EEG data duration for each of the eight 
subjects and (right plot) imagined EEG data duration for each of eight subjects.  Note the different vertical scales 
for the plot of heard sentence classifiability (left) and imagined sentence classifiability (right).  Each curve shows 
the results for one subject.  Measurements for trials using the same sentence were concatenated to produce 
segments of longer duration.  
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Imagined word and sentence identification using EEG.  The final chapter of Dr. Thom Lappas' 
dissertation (Lappas, 2011) reports the results of an experiment on the use of EEG to determine 
which of six possible "Coordinate Response Measure" sentences a subject was imagining. Six 
sentences that vary in callsign and color words were used:  "Ready [callsign] go to [color] now", 
with three callsign words "baron", "eagle" and "tiger" and two color words "red" and "green".  
Each trial started with one of the six possible sentences presented aloud (the cue).  The cue 
period was followed at a set interval by two clicks to help subjects produce the cued sentence in 
imagination during the targeted production period (see Figure 9).  The initial second in each trial 
produced EEG that was used to normalize the power spectrum, for each trial and channel.  EEG 
recorded during the trial period 4.3 - 7.2 sec were then subject to sequential feature analysis with 
the aim of determining which channels, times and frequencies are most informative when 
performing a six-way classification of single trials.  Leave-one-out cross-validation was used to 
determine classification performance rates. 
 
 
 
 

Figure 9.  Trial time course for the Coordinate Response Measure experiment.  The cued sentence was heard 
aloud; these auditory stimuli were recorded beforehand in the subject's own voice.  After two clicks, subject's task 
was to reproduce the cued sentence in imagination with the onset indicated above.  EEG data were analyzed during 
the period 4.3 - 7.2 sec. 

 
Six-way sentence classification performance rates found for each subject's daily data, using these 
most informative features, are highly significant.  Three of the subjects had days on which 
performance rates exceeded 50%, a level three times the guessing rate 16%.  Three-way 
classification of callsign words was highly significant for all subjects and reached 70% and 73% 
for the top two subjects, which compares favorably to the guessing rate 33%.  Finally, two-way 
classification of color words was highly significant for all subjects and reached 83% and 84% for 
the top two, which compares favorably to the guessing rate 50%.  While the most informative 
features varied across subjects and days, aggregating informative features across subjects and 
experimental sessions shows that the most informative channels tend to lie over temporal cortex, 
especially temporal cortex in the left hemisphere (see Figure 10). 
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Figure 10. Locations and 
frequency of occurrence of 
the most informative 
electrodes found across the 
three classifications and 
across all days of data 
collection for the seven 
subjects in the CRM  
experiment.  The colorbar at 
right relates disk color to the 
frequency of occurrence of a 
particular electrode location 
in the aggregate list of 
informative features. 

 
 
Use of EEG to determine who somebody is listening to.  As part of his dissertation work, UC 
Irvine graduate student Cort Horton studied the information found in EEG while a person listens 
to one of two or more speakers (Horton et al., 2013).  Recent studies report activity in auditory 
cortex that is phase-locked to the envelope of speech, but it remains unclear whether this phase-
locked representation requires comprehension, how it interacts with attention, and the extent to 
which it is hemispherically lateralized.  EEG was recorded from 10 adults while they selectively 
attended to amplitude-modulated speech coming from one speaker, while ignoring speech from 
another.  Detailed timing and topographic information about the envelope representations was 
extracted by cross-correlating the attended and unattended stimulus envelopes with each channel 
of EEG, as well as components produced via ICA decomposition of the data.   
 
Results show that the envelopes of both attended and unattended speech are encoded in the EEG, 
including several lateralized responses (see Figure 11).  However, there are large differences 
between the attended and unattended cross-correlation functions.  In addition, trial stimuli were 
amplitude-modulated at 40 and 41 Hz in order to induce steady-state responses.  Those steady-
state responses were not affected by attention.  The data suggest that mechanisms for selective 
attention to one of multiple speakers involves frequency-band limited enhancement and 
suppression, as well as a modulation of the phase of endogenous theta activity in auditory cortex 
to align high-excitability periods with attended speech syllables.   
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Figure 11. Envelope-EEG cross-
correlations.  Plots of the grand-
averaged correlation between each 
channel of EEG with the stimulus 
envelopes as a function of lag.  
Each trace represents a separate 
channel of EEG.  The dashed lines 
indicate the 0.5th and 99.5th 
percentile of correlation values 
observed in the control condition.  
Several delays in the cross-
correlation functions are further 
illustrated with topographic plots 
underneath.  Warm colors denote 
correlations with positive 
potentials, while cool colors denote 
correlations with negative 
potentials. 

 
 
Horton and colleagues (2015) extended the result by investigating the accuracy with which a 
subject’s locus of attention during a “cocktail party” task can be ascertained from speech 
loudness envelope responses present within single trials of EEG.  It was found that the attended 
speaker can be determined reliably from short periods of EEG, with accuracy improving as a 
function of trial length. Furthermore, the performance of this speech loudness envelope-based 
attention classifier was compared to others based on changes in steady-state responses (elicited 
via 40 and 41 Hz amplitude modulations of the speech) and hemispheric lateralization of alpha 
power. We found that the neural responses to the speech loudness envelopes were far more 
robust indicators of attention than the others. Figure 12 shows that the use of EEG identified as 
informative through cross-correlation with speech stimulus envelopes (leftmost panel) leads to 
strong classification results, while the use of alpha lateralization indices (middle panel) or 
auditory steady-state response magnitudes (rightmost panel) do not.  These results suggest that 
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envelope-related signals recorded in EEG data can be used to form robust auditory BCIs that do 
not require artificial manipulation (e.g., amplitude modulation) of stimuli in order to function. 
 

 
Figure 12.  Classification accuracy is plotted as a function of EEG sample length for each of three different 
classifiers that make use of different features in the EEG.  The mean accuracies for each subject are indicated by 
the individual data points, with the subject mean indicated by the black line.  Chance is marked with the dashed 
line at 50% classification accuracy.  Significantly above-chance accuracy values are marked by blue circles, while 
non-significant values are indicated by red crosses.  Measures of the hemispheric lateralization of alpha power 
provide poor classification accuracy (middle plot), as do magnitudes of auditory steady-state responses to 
modulations at 40 and 41Hz (right plot).  Cross-correlations between EEG and speech loudness envelopes provide 
a robust means to extract information that produces accurate determination of whether one is covertly paying 
attention to the speaker heard through the left ear or the speaker heard through the right ear. 

 
 
2B.  INTENDED DIRECTION 
 
Project research on intended direction included work on covert attention that bears some 
similarities to the just-discussed work on the direction of attention to particular speech streams.  
The difference is that the studies to be discussed in this section necessitate the direction of 
attention in a particular spatial direction.   An overt shift of attention is accompanied by eye, 
head, and body movements.  Covert shifts are not evident.  Yet covert shifts have been shown for 
decades to influence performance:  enhance speed and accuracy in tasks involving stimuli that lie 
in the covertly-attended direction.   
 
An experiment  with EEG showed that one can use EEG to determine whether one is attending to 
a speech stream at left or one at right (Thorpe et al., 2011).  Results suggest that attention to 
auditory stimuli activates brain networks similar to those activated during the direction of visual 
attention.  A study of covert attention to visual stimuli used EEG to perform a visual perimetry 
based on the bottom-up direction of attention (Coleman, 2014).  Results not only replicate earlier 
ones for the lateralization of EEG response in occipital cortex based on target presence in left or 
right visual hemifield, but also demonstrate a vertical gradient in occipital cortical EEG activity 
that depends on visual target vertical position.  
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EEG signals concerning the direction of attention to auditory stimuli.  UCI graduate student 
conducted ARO MURI-supported work as part of his dissertation research (Thorpe et al., 2011).  
A cued spatial attention experiment was conducted to investigate the time-frequency structure of 
human EEG induced by attentional orientation of an observer in external auditory space.  
Attention was cued to one of two spatial locations, at left and right, respectively (see Figure 13).  
Subjects were instructed to report the speech stimulus at the cued location and to ignore a 
simultaneous speech stream originating from the uncued location.  Analysis used wavelet spectra 
to normalize response in each EEG frequency band by the mean level observed in the early part 
of the cue interval, with the aim of measuring induced power related to the deployment of 
attention.   
 

 
Figure 13.  The experiment design in the work by Thorpe et al. (2011).  Above is shown the physical layout of the 
experiment.  Each speaker was 45 deg away from fixation and could not be seen by an observer without moving 
the eyes.  Below is shown the trial time course.  In the example shown, the subject is cued to attend to the left 
speaker.  After a variable interstimulus interval (ISI, from 500-1500 msec), two different sentences are played 
through the speakers.  The subject's task is to indicate the codeword and color word played from the cued speaker.  
The volume of the uncued speaker is high enough to necessitate strict attention to sound in the direction of the cued 
speaker. 

 
Topographies of band-specific induced power during the cue and inter-stimulus intervals showed 
peaks over the symmetric bilateral scalp areas (see Figure 14 for the alpha power band result). 
Results suggest that the deployment and maintenance of spatially-oriented attention through a 
period of 1100 msec is marked by distinct episodes of reliable hemispheric lateralization 
ipsilateral to the direction in which attention is oriented.  An early theta lateralization was 
evident over posterior parietal electrodes and was sustained through the interstimulus interval.  In 
the alpha and mu bands, punctuated episodes of parietal power lateralization were observed 
roughly 500 msec after attentional deployment, consistent with previous studies of visual 
attention.  In the beta band, these episodes show similar patterns of lateralization over frontal 
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motor areas.  These results indicate that spatial attention involves similar mechanisms in the 
auditory and visual modalities. 
 

 
Figure 14.  Induced alpha band power is shown averaged over the cue and interstimulus intervals for left-cued 
(LC) and right-cued (RC) attention conditions, respectively.  Two pairs of symmetric channel groups appear as 
peaks in the resultant power band topographies.  These are situated over bilateral motor (pink/blue dots for LC/RC, 
respectively) and parietal areas (magenta/cyan dots for LC/RC, respectively).   

 
Use of EEG to track bottom-up visual attention in two dimensions.  UCI graduate student 
Robert Coleman studied visual attention in his MURI-supported dissertation work (Coleman, 
2014).  His results suggest that EEG may be used to discern the covert direction of visual 
attention in one or two dimensions.  Subjects in an EEG experiment sat in front of a monitor and 
maintained fixation on the center of the monitor’s screen while directing attention covertly to a 
sequence of target letters.  For each presentation, the subjects responded with a button press to 
indicate target identity.  Visual targets were the single letters A, F, H, or L.  Each letter was 
presented for 1500 msec and was followed immediately by the next letter.  Target locations 
varied in three different ways to provide three experimental conditions:  

1. the targets varied in horizontal position, with positions drawn from a uniform distribution 
on the range [-19.2, 19.2] degrees of visual angle (deg); these were vertically centered 
and varied in azimuth; 

2. the targets varied in vertical position, with positions drawn from a uniform distribution 
on the range [-19.2, 19.2] deg;  these were horizontally centered and varied in elevation; 

3. target position varied in two dimensions, with positions drawn from a uniform 
distribution on the square [-19.2, 19.2] deg x [-19.2, 19.2] deg in the center of the display.  

Analysis used common spatial pattern features from 64 channel EEG measured within alpha (8-
12Hz), low-beta (16-20 Hz) and high-beta (22-26Hz) bands and within 350-600 msec of target 
presentation onset (see figure 15).  To determine how well EEG can be used to determine letter 
location, the range of letter locations was divided into two, three, or five equal-sized intervals for 
the horizontal and vertical conditions, and was divided into four or nine equal-sized square 
sectors for the 2D condition.  Support vector machine and 50-tree random forest classifiers were 
used to classify trials from two subjects according to target letter position.  Classifications into 
two, three or five sectors in horizontal and vertical conditions were statistically significant for 
both subjects; classifications into four or nine sectors in the 2D condition were also significant.   
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Figure 15.  The topographies of random forest classifier permutation feature importance indicate that right 
lateralized occipito-parietal alpha and low-beta power are the predominant features used to reliably predict covert 
visual attention location along the azimuth.  Data from the horizontal condition and the 2D condition were used to 
generate these topographies.  A similar analysis suggests that central occipito-parietal low-beta power is the most 
important feature when identifying vertical location.  

 
The overall result is that EEG can be used to passively detect the spatial position of visual 
attention, at varying degrees of precision, as a person attends to objects they see. 
 
EEG-based BCI for movement control.  In a first stage of this project, software for the action 
game Quake 2 was modified to receive and act on movement control signals provided by EEG 
signal-processing software.  The EEG signal-processing software was trained to recognize neural 
activity, generated by the user of the brain-computer interface, meant to signal turn left, turn 
right, go, or stop.  A naive Bayes classifier was used to process data from a brief training 
experiment in which the user signaled these four categories without any movement.  We were 
able to demonstrate successful navigation through a Quake 2 game level using brain waves with 
these methods.  
 
We next extended these methods to handle robot control.  Graduate research assistant Zack 
Wisti, aided by Associate Specialist John Hagedorn and by D'Zmura, implemented robot romote 
control by mobile human subjects.  A custom-built, portable, tetherless, 64-electrode EEG 
system by ANT and acquired using DURIP funding is worn in a backpack by a mobile human 
subject.  A laptop computer within the backpack performs EEG-based brain-computer interface 
signal processing.  The signal-processing computer is connected wirelessly to a computer 
onboard the robot (see Figure 16).  
 
A simple navigational scheme was used to control turns to left and right and to control stopping 
and starting.  Measurements of alpha power in left hemisphere and right hemisphere electrodes, 
respectively, are used for control.  The measured difference in alpha power between left and 
right hemispheres is used to cause either left or right turns by the robot.  Likewise, the total alpha 
power in left and right hemispheres is used to modulate speed.  A high alpha power signals 
relaxation or closed eyes and is a natural signal for stopping.  Reduction in alpha due to alertness 
causes the robot to start moving forward again. 
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Figure 16.  Mobile subject Hagedorn with red EEG gel cap controls navigation of robot (center).  A signal-
processing computer within the backpack worn by the subject communicates wirelessly with a computer onboard 
the robot.  EEG signals are processed by the computer in the backpack to control the robot's left/right turns and 
starting/stopping.  Subject's task is to cause the robot to navigate a full lap of a slalom course marked by orange 
pylons. 
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